If a system at equilibrium is subjected to a ______, the equilibrium is displaced in the direction that relieves the _____.

- A stress is defined as any change which could affect the ______ of either or both the forward and/or reverse reaction.
- When, because of an applied stress, the forward reaction is faster than the
 reverse reaction, the system is said to shift to the (right, left). As a result,
 the [products] will (increase, decrease) and the [reactants] will (increase,
 decrease).
- When, because of an applied stress, the reverse reaction is faster than the
 forward reaction, the system is said to shift to the (right, left). As a result,
 the [products] will (increase, decrease) and the [reactants] will (increase,
 decrease).

In simpler terms: If anything is added to a system at ______, the system will try to consume whatever was ______. If anything is removed from a system at equilibrium, the system will try to replace whatever was ______. So, the reaction is favored away from what is (added, removed) and toward what is (added, removed).

1. In the following reaction, will the $[H_2]$ increase or decrease when equilibrium is reestablished after these stresses are applied?

 $N_{2}(g) + 3 H_{2}(g) \rightleftharpoons$ 2 $NH_{3}(g) + 22 kJ$ $NH_{3}(g)$ is added _______ $N_{2}(g)$ is removed ______ pressure is increased ______ temperature is increased ______

2. Note reaction: $2 \text{ NO } (g) + \text{H}_2 (g) \Longrightarrow \text{N}_2 \text{O} (g) + \text{H}_2 \text{O} (g) + 36 \text{ kJ}$ In which direction, left or right, will the equilibrium shift if the following changes are made?

NO is added _____ the system is cooled _____ H2 is removed ____ pressure is increased _____ N2O is added _____ H2 is removed _____

Worksheet:	Le	Chatelier's	Principle
AA OL VOLLEEL.	LE	Charener 3	i i incipie

3. In this reaction:

$$CO_{2}(g) + H_{2}(g) + heat \Longrightarrow CO(g) + H_{2}O(g)$$

a. Is heat absorbed or released by the forward reaction?

b. In which direction will the equilibrium shift if these changes are made?

CO is added _____ temperature is increased ______

CO₂ is added _____ system is cooled _____

H₂ is removed _____ pressure is increased ______

catalyst is added _____

4. In this reaction:

2 NO (g) + H₂ (g)
$$\Longrightarrow$$
 N₂O (g) + H₂O (g) + heat

What will happen to the $[H_2O]$ when equilibrium is reestablished after these stresses are applied?

temperature is increased
a catalyst is added
pressure is decreased
NO is added
N2O is removed

5. How would an increase in pressure affect the $[H_2]$ in the following reactions?

2 H₂ (g) + O₂ (g) ==== 2 H₂O (g)_____

 $4 H_{2}(g) + Fe_{3}O_{4}(s) \implies 3 Fe(s) + 4 H_{2}O(l)$

 $H_{2}(g) + Cl_{2}(g) \Longrightarrow 2 HCl(g)$