\qquad

If a system at equilibrium is subjected to a \qquad , the equilibrium is displaced in the direction that relieves the \qquad .

- A stress is defined as any change which could affect the \qquad of either or both the forward and/or reverse reaction.
- When, because of an applied stress, the forward reaction is faster than the reverse reaction, the system is said to shift to the (right, left). As a result, the [products] will (increase, decrease) and the [reactants] will (increase, decrease).
- When, because of an applied stress, the reverse reaction is faster than the forward reaction, the system is said to shift to the (right, left). As a result, the [products] will (increase, decrease) and the [reactants] will (increase, decrease).

In simpler terms: If anything is added to a system at \qquad the system will try to consume whatever was \qquad . If anything is removed from a system at equilibrium, the system will try to replace whatever was \qquad .
So, the reaction is favored away from what is (added, removed) and toward what is (added, removed).

1. In the following reaction, will the $\left[\mathrm{H}_{2}\right]$ increase or decrease when equilibrium is reestablished after these stresses are applied?

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+22 \mathrm{~kJ}
$$

$\mathrm{NH}_{3}(g)$ is added $\mathrm{N}_{2}(\mathrm{~g})$ is removed pressure is increased temperature is increased \qquad
2. Note reaction: $2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+36 \mathrm{~kJ}$ In which direction, left or right, will the equilibrium shift if the following changes are made?

NO is added
H_{2} is removed \qquad the system is cooled $\mathrm{N}_{2} \mathrm{O}$ is added pressure is increased H_{2} is removed \qquad
\qquad
3. In this reaction: $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+$ heat $\rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. Is heat absorbed or released by the forward reaction?
b. In which direction will the equilibrium shift if these changes are made?
CO is added \qquad temperature is increased CO_{2} is added \qquad system is cooled H_{2} is removed pressure is increased catalyst is added \qquad
4. In this reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat

What will happen to the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ when equilibrium is reestablished after these stresses are applied?
temperature is increased
a catalyst is added
pressure is decreased
NO is added
$\mathrm{N}_{2} \mathrm{O}$ is removed

5. How would an increase in pressure affect the $\left[\mathrm{H}_{2}\right]$ in the following reactions?

$$
\begin{aligned}
& 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{~g})
\end{aligned}
$$

